Preliminary communication

Solid-state structures of $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{2} \mathrm{Ir}(\mathrm{Me})$ and $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ (diphos)Ir(Me). Two stereochemically non-rigid pentacoordinate Ir^{I} species

MELVYN R. CHURCHILL* and SUZAN A. BEZMAN
Department of Chemistry, Havard University, Cambridge, Massachusetts 02138 (U.S.A.)
(Received June 26th, 1971)

It has been known, for some time, that certain pentacoordinate phosphorus(V) derivatives undergo rapid intramolecular rearrangements in the liquid phase or in solution ${ }^{1,2}$ and a mechanism (termed "pseudorotation") has been proposed ${ }^{3}$ and confirmed for these rearrangements ${ }^{4-6}$. While pentacoordination is well established for transition metal complexes, there have been only a few reports of fluxional behaviour in these compounds (see ref. 7 and references therein) and only recently have any mechanistic studies been reported ${ }^{7-9}$. The problem, here, is more complex than for main-group elements since the idealized ground-state geometry may be square-pyramidal ($C_{4 \nu}$) or trigonal-bipyramidal ($D_{3 h}$) or even some distortion therefrom.

Shapley and Osborn have described the temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{Ph}_{3-n} \mathrm{Me}_{n} \mathrm{P}\right)_{2} \mathrm{Ir}(\mathrm{R})$ complexes $\left(\mathrm{C}_{8} \mathrm{H}_{12}=1,5\right.$-cyclooctadiene; $0 \leqslant n \leqslant 2, \mathrm{R}=\mathrm{H}$ or Me) and have discussed the possible mechanisms of intramolecular rearrangement in some detail ${ }^{7}$. We now report the results of an X-ray diffraction study on $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{Me})$ which confirm the proposed ${ }^{7}$ trigonal-bipyramidal ground state and provide detailed information on the geometry within the iridium(I) coordination sphere.

Crystals were obtained by evaporation, under reduced pressure, of a deoxygenated benzene solution of the compound. Unit cell data are: orthorhombic, space group Pbca (D_{2}^{15}; No. 61), with $a=8.11$ (1), $b=17.10(2), c=34.53(5) \AA, V=4789 \AA^{3}, \rho_{\mathrm{obsd}}=$ $1.63 \pm 0.01, \rho_{\text {calcd }}=1.641 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ for $M=591.7$ and $Z=8$.

X-ray diffraction data to $\sin \theta=0.80(\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $\lambda=1.5418 \AA)$ were collected with a 0.01°-incrementing Supper-Pace diffractometer using equi-inclination Weissenberg geometry and a 'stationary-background, ω-scan, stationary-background' counting sequence. A total of 3390 reflections were collected from the levels $h(0-9) \ell$ and $(0-3) k \ell$ and were corrected for Lorentz, polarization and absorption ($\mu=119.8 \mathrm{cml}^{-1}$) effects. All data were placed on a common scale and the structure was solved by a combination of Patterson, Fourier, and least-squares refinement techniques. The final discrepancy index is $R=6.8 \%$ for the 1724 independent non-zero reflections. (Anisotropic thermal parameters applied only to Ir and P atoms; all non-methyl hydrogens located in calculated positions.)

The structure of the molecule is shown in Fig.1. The iridium(I) atom is in

[^0]essentially trigonal-bipyramidal coordination, with a methyl $[\mathrm{Me}(1)]$ and an olefinic group [C(17)-C18)] in axial positions, the remaining olefinic residue [C(13)-C(14)] and two phenyldimethylphosphine ligands occupying the three equatorial sites. The iridium-methyl linkage is 2.202 (22) \AA; rather longer than values found for octahedral $\mathrm{Ir}^{\mathrm{II}}-\mathrm{Me}^{\text {linkages }}{ }^{10}$ The iridium-phosphorus distances are equivalent: $\mathrm{Ir}-\mathrm{P}(1)=2.316$ (5) and $\mathrm{Ir}-\mathrm{P}(2)=$ 2.329 (5) \AA. The iridium atom is not coplanar with $\mathrm{P}(1), \mathrm{P}(2)$ and A but is displaced (towards B) by $0.208 \AA$. Angles within the equatorial plane are irregular, the smallest being $\mathrm{P}(1)-\mathrm{Ir}-\mathrm{P}(2)=101.5(0.2)^{\circ}$, with $\mathrm{P}(1)-\mathrm{Ir}-\mathrm{A}=130.4(0.6)^{\circ}$ and $\mathrm{P}(2)-\mathrm{Ir}-\mathrm{A}=125.4(0.6)^{\circ}$. Angles from the coordinated methyl group are: $\mathrm{Me}(1)-\mathrm{Ir}-\mathrm{P}(1)=87.0(0.6)^{\circ}, \mathrm{Me}(1)-\mathrm{Ir}-\mathrm{P}(2)$ $=84.5(0.6)^{\circ}, \mathrm{Me}(1)-\mathrm{Ir}-\mathrm{A}=82.8(0.8)^{\circ}$ and $\mathrm{Me}(1)-\mathrm{Ir}-\mathrm{B}=168.7(0.8)^{\circ}$; those from the axial olefinic group are: $\mathrm{B}-\mathrm{Ir}-\mathrm{P}(1)=97.9(0.6)^{\circ}, \mathrm{B}-\mathrm{Ir}-\mathrm{P}(2)=104.3(0.6)^{\circ}$ and $\mathrm{B}-\mathrm{Ir}-\mathrm{A}=$ $86.4(0.8)^{\circ}$.

We have recently extended our studies to $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ (diphos)Ir(Me) (diphos $=1,2$-bis(diphenylphosphino)ethane). This complex undergoes intramolecular rearrangement at even lower temperatures than does $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{2} \mathrm{Ir}(\mathrm{Me})$; no limiting spectrum has been observed, but the complex has a proton magnetic resonance spectrum consistent with molecular C_{S} symmetry ${ }^{11}$. Thus, magnetic resonance studies do not allow a distinction between a square-pyramidal or trigonal-bipyramidal ground state.

Crystal data for $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ (diphos)Ir(Me) are: orthorhombie, space group Pnma (D_{28}^{15}; No. 62), with $a=10.13$ (1), $b=21.33$ (3), $c=13.70$ (2) $\AA, V=2960 \AA^{3}, \rho_{\text {obsd }}=$ $1.58 \pm 0.02, \rho_{\text {calcd }}=1.602 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ for $M=713.8$ and $Z=4$. Data to $\left.\sin \theta=0.86 \mathrm{Cu}-\mathrm{K} \alpha\right)$ were collected (as described above) for levels $h k(0-8)$ and ($0-7$) k. The corrected, correlated data ($\mu=97.95 \mathrm{~cm}^{-1}$) have allowed refinement to $R=6.1 \%$ for the 1698 independent non-zero reflections. (Anisotropic thermal parameters for Ir and \mathbf{P} only.) The $\mathrm{Ir}^{\mathbf{I}}$ center has a trigonal

Fig.1. The $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{2} \mathrm{Ir}(\mathrm{Me})$ molecule, viewed down ' b '. (Note that A and B refer to the midpoints of the olefin residues defined by $C(13)-C(14)$ and $C(17)-C(18)$, respectively.) Iridium to olefin distances are: $\operatorname{Ir}-\mathrm{A}=2.078(11), \mathrm{Ir}-\mathrm{B}=2.117$ (10) \AA. Corresponding distances in $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ (diphos) $\mathrm{Ir}(\mathrm{Me})$ are: $I r-A=2.008$ (11), $I T-B=2.090$ (10) A.
J. Organometal. Chem., 31 (1971) C43-C45
bipyramidal stereochemistry and the molecule has precise C_{S} symmetry (with the mirror plane containing the iridium atom and methyl group, and bisecting the diphos and the 1,5 -cyclooctadiene ligands. The relative orientation of ligands is the same as in $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{PPhMe}_{2}\right)_{2} \mathrm{Ir}(\mathrm{Me})$, with $\mathrm{Ir}-\mathrm{Me}=2.126$ (17) and $\mathrm{Ir}-\mathrm{P}=2.308$ (3) A. Angles around the metal atom (in deg.) are $\mathrm{P}-\mathrm{Ir}-\mathrm{P}^{\prime}=84.9$ (2), $\mathrm{P}-\mathrm{Ir}-\mathrm{A}=\mathrm{P}^{\prime}-\mathrm{Ir}-\mathrm{A}=136.3$ (4); $\mathrm{Me}-\mathrm{Ir}-\mathrm{P}=$ $\mathrm{Me}-\mathrm{Ir}-\mathrm{P}^{\prime}=84.7$ (3), $\mathrm{Me}-\mathrm{Ir}-\mathrm{A}=85.7$ (5), $\mathrm{Me}-\mathrm{Ir}-\mathrm{B}=170.4$ (5); $\mathrm{B}-\mathrm{Ir}-\mathrm{P}=\mathrm{B}-\mathrm{Ir}-\mathrm{P}^{\prime}=$ 102.2 (3) and $\mathrm{B}-\mathrm{Ir}-\mathrm{A}=84.7$ (4).

It is tempting to speculate that (as is the case with phosphorus compounds ${ }^{2}$) the extra strain associated with the small equatorial P - Ir- P angle of $84.9(2)^{\circ}$ in $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ (diphos)Ir(Me), as opposed to that of $101.5(2)^{\circ}$ in $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{PPhMe}_{2}\right)_{2} \operatorname{Ir}(\mathrm{Me})$, is responsible for the greater ease of intramolecular rearrangement (probably 'pseudorotation') in the former complex.

Finally, it should be noted that NMR studies and crystallographic results suggest that in HML_{4} complexes a different mode of intramolecular rearrangement is operative; Muetterties and coworkers ${ }^{12}$ have concluded that non-rigidity in these species arises from 'hydrogen atom traverse of MP_{4} "tetrahedral" faces'.

ACKNOWLEDGEMENT

This work was generously supported by the National Science Foundation (Grant GP-26293, to M.R.C.). S.A.B. acknowledges, with gratitude, the receipt of an N.S.F. Predoctoral Fellowship.

REFERENCES

1 E.L. Muetterties and R.A. Schunn, Quart. Rev., 20 (1966) 245.
2 F.H. Westheimer, Acc. Chem. Res., 1 (1968) 70.
3 R.S. Berry, J. Chem. Phys., 32 (1960) 933.
4 G.M. Whitesides and W.M. Bunting, J. Amer. Chem. Soc., 89 (1967) 6801.
5 G.M. Whitesides and H.L. Mitchell, J. Amer. Chem. Soc., 91 (1969) 5384.
6 D. Gorenstein and F.H. Westheimer, J. Amer. Chem. Soc., 92 (1970) 634.
7 J.R. Shapley and J.A. Osborn, J. Amer. Chem. Soc, 92 (1970) 6976.
8 D.P. Rice and J.A. Osbom, J. Organometal. Chem., 30 (1971) C84.
9 S.T. Wilson and J.A. Osborn, J. Amer. Chem. Soc., 93 (1971) 3068.
10 M.R. Churchill, Perspect. Struct. Chem., 3 (1970) 91; see especially pp. 145-147.
11 J.R. Shapley, personal communication.
12 P. Meakin, J.P. Jesson, F.N. Tebbe and E.L. Muetterties, J. Amer. Chem. Soc., 93 (1971) 1797.

[^0]: *Address correspondence to this author at: Department of Chemistry, University of Illinois at Chicago Circle, Box 4348, Chicago, Illinois 60680 (U.S.A.)

